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Abstract

We survey a research program on the strong convergence of unitary
and permutation representations of discrete groups. We also take the
opportunity to flesh out details that have not appeared elsewhere.
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1 Definitions

Throughout the article Γ denotes an infinite discrete group. For n P N we
write Upnq for the group of complex n � n unitary matrices and Sn for the

group of permutations of rns def� t1, . . . , nu.
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Definition 1.1 (Strong convergence, PMatF). If tρi : Γ Ñ Upniqu8i�1 are a
sequence of (possibly random) finite dimensional unitary representations of
Γ, say ρi strongly converge to the regular representation (almost surely, or
in probability, if ρi are random) if for any z P CrΓs,

lim
iÑ8

}ρipzq} � }λΓpzq}

(a.s., or in probability, respectively) where λΓ : Γ Ñ Up`2pΓqq is the left
regular representation. The norms above are operator norms. We write

ρi
strongÝÝÝÑ λΓ in this event. If Γ has such a sequence of unitary representations

then we say Γ is purely matricial field (PMatF).

Remark 1.2.

1. Weak convergence. Some authors ask for weak convergence as part of
the definition of strong convergence, but we do not. Weak convergence
is the statement that for all z P CrΓs,

lim
iÑ8

trrρipzqs � τpzq

where tr � n�1
i Tr is the normalized trace on ni�ni matrices and τpzq is

the canonical tracial state on the reduced C�-algebra C�
redpΓq. If C�

redpΓq
has a unique tracial state then strong convergence implies weak con-
vergence (e.g. [LM23, Lemma 6.1])1. We now know exactly when
C�

redpΓq has a unique tracial state by Breuillard-Kalantar-Kennedy-
Ozawa [BKKO17, Thm. 1.6]: this is so when Γ has no non-trivial
normal amenable subgroup.

2. Nomenclature. Let Mnidenote the complex matrix C�-algebra of di-
mension ni, `

8p±iMniq denote the bounded sequences in the product,
and I the closed two sided ideal of sequences that converge to zero. If

ρi
strongÝÝÝÑ λΓ then

±
i ρi descends (and extends) to an embedding

C�
redpΓq ãÑ `8p

¹
i

Mniq{I.

If there exists any such embedding then C�
redpΓq is called matricial

field by Blackadar and Kirchberg in [BK97]. But conversely such an

1We first heard this observation from Benôıt Collins in June 2022.
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embedding does not (a priori) have to factor through `8p±iMniq when
restricted to CrΓs. Hence the adjective ‘purely’. The concept of purely
matricial field was introduced in Magee–de la Salle [MdlS23].

3. More generally, if G is a locally compact topological group, we can
extend our definition by replacing CrΓs by the continuous compactly
supported complex functions on G.

A first attempt to require strong convergence to factor through permu-
tations would be that the ρi are the composition of some φi P HompΓ, Snq
with the (n-dimensional) permutation representations of Sn. However, since
this gives rise to ρi with non-zero invariant vectors, this can never work if
Γ is non-amenable, which is not satisfactory. So the definition is modified
in the following way. Let std denote the pn � 1q-dimensional irreducible
subrepresentation of the defining representation of Sn.

Definition 1.3 (PPermF). If there exist a sequence of homomorphisms
tφi : Γ Ñ Sniu8i�1 such that

tρi def� std � φiu8i�1

strongly converge to the regular representation, then we say Γ is purely per-
mutation field (PPermF).

Strong convergence, and the associated above properties PMatF and
PPermF have recently found powerful applications in a surprising range of
settings including but not limited to the spectral geometry of graphs [BC19]
and hyperbolic manifolds [HM23, LM23, MT24], the theory of minimal sur-
faces (observed by Song [Son24a, Son24b], and the Peterson-Thom conjecture
[PT11] (as observed by Hayes [Hay22]) on subalgebras of free group factors.
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2 PMatF and PPermF

We begin with some basic properties of PMatF and PPermF. In this section
Λ ¤ Γ are discrete groups.

Lemma 2.1 (Restriction to subgroups). If Γ is PMatF (resp. PPermF)
then Λ is PMatF (resp. PPermF).

Proof. Suppose z P CrΛs ¤ CrΓs. If ρi
strongÝÝÝÑ λΓ then }ρipzq} Ñ }λΓpzq} as

iÑ 8. But as a CrΛs-module,

`2pΓq � à
rγsPΛzΓ

`2pΛγq � à
rγsPΛzΓ

`2pΓq

so }λΓpzq} � }λΛpzq}. Hence if ρ1i is the restriction of ρi to Λ, ρ1i
strongÝÝÝÑ λΛ.

If the representations factor through Sni then their restrictions still do.

Lemma 2.2 (Induction to finite index overgroups). If Λ is PMatF and finite
index in Γ then Γ is also PMatF.

Lemma 2.2 is a special case of a more general phenomenon (induction from
co-compact lattices) that will be covered later in the paper (see Theorem 3.1).

2.1 Amenable groups.

The following argument about amenable groups was obtained in conversa-
tions with Mikael de la Salle.

Say that Γ is residually linear (RL) (resp. residually finite (RF)) if it
embeds into a product of GLni (resp. Sniq. A theorem of Malcev [Mal40]
states that every finitely generated (f.g.) linear group is residually finite.
Hence if Γ is f.g. and RL then it is RF.
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If Γ is not RL then there is γ P Γ that is killed by every homomorphism
to some GLn. Then considering

z � γ � id P CrΓs,
we have

}ρpzq} � 0

for every ρ : Γ Ñ GLn. But }λpzq} is not zero (or else λpzq � 0 but CrΓs
always embeds to C�

redpΓq). The upshot is that:

Lemma 2.3. A PMatF group is residually linear. Hence it is also either
residually finite or not finitely generated.

On the other hand, if Γ is countable and RF then by projecting to large
enough factors of the

±
i Sni we obtain a sequence of homomorphisms φj :

Γ Ñ SNj such that each φj injects on a finite set Sj such that YjSj � Γ.
For any z P CrΓs let Φj denote the unitary representation of Γ obtained by
composing φj with the standard representation of SNj .

Because we eventually inject on the support of pzz�qp we have then

trrΦjpzz�qps � τppzz�qpq � 1

Nj

εppzz�qpq

where ε is the state associated to the trivial representation of Γ, for j "p 1.
Since the trivial representation is weakly contained in the regular represen-
tation of Γ we have

εppzz�qpq ¤ }λpzq}2p.

Hence we also have

}Φjpzq}2p � }Φjpzz�qp} ¥ trrΦjpzz�qps ÑiÑ8 τppzz�qpq � p}λpzq}�opÑ8p1qq2p

where the last equality used that the trace τ is faithful. Taking p large and
fixed and letting iÑ 8 for each large p we obtain

lim inf
jÑ8

}Φjpzq} ¥ }λpzq}.

But on the other hand for amenable groups }λpzq} ¥ }Φipzq} for all z P CrΓs
because all finite dimensional unitary representations of amenable groups are
weakly contained in the regular representation. So in fact

lim
jÑ8

}Φjpzq} � }λpzq}.
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Hence in summary for amenable groups

countable� RF ùñ PPermF

and
PMatF ùñ RL,

f.g.� PMatF ùñ RF.

What is perhaps surprising is that all amenable groups have f.d. approximate
representations (in norm sense) that strongly converge to the regular repre-
sentation [TWW17]. This appears to leave open the question of whether
non-countable discrete amenable groups are PMatF or PPermF.

2.2 Free groups

Let Fr denote a free non-abelian group of rank r ¥ 2.
The original interest in property PMatF for non-amenable groups comes

from an observation of Voiculescu [Voi93] that establishing ‘Fr is PMatF’
— albeit not in this language — would settle the then outstanding problem
in operator algebras to prove the K-theoretic construct ExtpC�

redpFrqq has
non-invertible elements.

Motivated by this application to K-theory, Haagerup and Thorbjørnsen
proved Fr is PMatF in the main theorem of [HT05]. Importantly, this, and
all subsequent proofs of this fact, rely on random matrix theory. As a result,
there is a lacuna in the field: we do not know how to construct explicit
f.d. representations of free groups that strongly converge to the regular
representation2 Haagerup and Thorbjørnsen used GUE random matrices and
an application of functional calculus to prove their result, and as a result, it
left open the question of whether Haar distributed random representations
of Fr a.s. strongly converge to the regular representation. This was proved
by Collins and Male in [CM14].

Later on, Bordenave and Collins [BC19] proved that Fr is PPermF by
use of random permutation representations. To explain their motivation
and to explain the motivation for PPermF in general, we detour to discuss
Friedman’s theorem.

2This problem seems known in the community, it is certainly not my own, and it was
highlighted to me by Avi Wigderson.
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Friedman’s theorem [Fri08], formerly conjecture of Alon [Alo86], states
informally that random regular graphs are almost optimal expanders. Alon
did not state which random model to use, but besides, there are contiguity
results that tell us it does not matter for the purposes of proving the above
statement [Wor99]. For simplicity of exposition assume that the random
regular graph has degree 2r and n vertices, with r fixed and nÑ 8.

If σ1, . . . , σr are i.i.d. uniformly random elements of Sn then the Schreier
graph for these generators and the action of Sn on t1, . . . , nu has adjacency
matrix

2r � idC `
�
stdpσ1q � stdpσ�1

1 q � � � � � stdpσrq � stdpσ�1
r q�.

The 2r � idC factor corresponds to the trivial eigenvalue 2r and in this setting,
asymptotically optimal expansion amounts to

}stdpσ1q � stdpσ�1
1 q � � � � � stdpσrq � stdpσ�1

r q} Ñ 2
?

2r � 1

(in probability) where the right hand side is optimal by a result of Alon–
Boppana [Nil91]. To put the above in a more symmetric form, and to connect
to our other discussions, if

φpxiq def� σi, ρpxiq � stdpφpxiqq � stdpσiq
then ρi is a random representation of the type appearing in the definition of
PPermF and Friedman’s theorem states

}ρipx1�x�1
1 �� � ��xr�x�1

r q} Ñ }λFrpx1�x�1
1 �� � ��xr�x�1

r q} � 2
?

2r � 1

in probability. This is a very restricted version of PPermF concerning only
the linear element

z � x1 � x�1
1 � � � � � xr � x�1

r P CrFrs
whereas PMatF and PPermF ask for the same for all(!) elements of CrΓs.
This is precisely what Bordenave–Collins prove in [BC19]: for all z P CrFrs

}ρipzq} Ñ }λFrpzq}
in probability. We cannot leave this discussion without remarking that very
recently, a beautiful and short proof of Friedman’s theorem has been ob-
tained by Chen, Garza-Vargas, Tropp, and van Handel, [CGVTvH24]. They
also extend the proof without adding much length to give a new proof of
Bordenave–Collins’ theorem.
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2.3 Non-free examples

Limit groups and surface groups. Motivated in part by applications to hyper-
bolic surfaces (see §3), in [LM23] Louder and I studied limit groups: finitely
generated groups such that for every finite subset, there is a homomorphism
to a free group that injects on that set.

Theorem 2.4 (Louder–Magee). Every limit group is PPermF.

The full strength of this result uses a result of Sela [Sel01, CG05] stating
that every limit group embeds into an iterated sequence of (extensions of
centralizers), beginning with a free group. This is combined with a quan-
titative version of a lemma of Baumslag [Bau62] and Haagerup’s inequality
[Haa79]. The following is one of the motivations.

Corollary 2.5. The fundamental group of an orientable surface of genus at
least two is PPermF.

While stated as a corollary, Sela’s work is not needed here as a genus two
surface group

xa, b, c, d | ra, bsrc, ds y
explicitly embeds to the extension of centralizers

xa, b, t | rt, ra, bss y
via a ÞÑ a, b ÞÑ b, c ÞÑ bt, d ÞÑ at; the injectivity of this map uses normal
form for amalgamated products. Higher genus surface groups embed into
this example via covering spaces.

Right-angled Artin Groups and related examples. A finitely generated
right-angled Artin group (RAAG) is generated by finitely many generators
with only relations that some subset of the pairs of generators are commuting
pairs. Besides interpolating between free non-abelian and free abelian groups,
they turn out to be fairly universal in that many natural families of groups
virtually embed into RAAGs. That is, they embed after passing to a finite
index subgroup. This includes the following classes of groups.

1. Closed hyperbolic three manifold fundamental groups. (Bergeron–Wise
[BW12] and Agol – [Ago13])

2. Non-compact finite volume three manifold fundamental groups3. (Wise
– [Wis21, Thm. 14.29])

3I thank Jean-Pierre Mutanguha for making me aware of this.

8



3. Arithmetic ‘standard type’ hyperbolic n manifold groups with n ¥ 4.
(Bergeron–Haglund–Wise [BHW11])

4. Any Coxeter group. (Haglund–Wise [HW10])

5. Any one-relator group with torsion. (Wise – [Wis21, Cor. 18.1])

6. Any word-hyperbolic cubulated group. (Agol – [Ago13])

The above results also all rely on a result of Haglund and Wise [HW08]
stating that fundamental groups of compact special cube complexes embed
into RAAGs.

By Lemmas 2.1 and 2.2, PMatF passes from RAAGs to those groups
above. The ‘master theorem’ that RAAGs are indeed PMatF was obtained
in joint work with Thomas [MT24].

Theorem 2.6 (Magee–Thomas). Finitely generated RAAGs are PMatF.

It is not true however that in general RAAGs are PPermF. The following
proposition has not appeared elsewhere in print.

Proposition 2.7. F2 � F2 � F2 is not PPermF.

Proof. Let Gi denote the copy of F2 embedded at the ith factor, i � 1, 2, 3.
Let tρju8j�1 be a putative sequence of permutation representations of F2 �
F2 � F2 such that std � ρi strongly converges to the regular representation.
We interpret ρj as a linear representation by composition with the defining

representation. Let Hi,j
def� ρjpGiq ¤ Snj . Since F2 is non-amenable, each

Hi,j has at most one dimensional space of invariant vectors in the defining
representation. This means that each Hi,j must be a transitive subgroup of
Snj (acting transitively on rnjs) for j " 1. A theorem of finite group theory4

states that two commuting transitive permutation groups (say J1 and J2 in
SNq only arise in the following way: there is some auxiliary group U with
|U | � N , and injective morphisms ι1 : J1 � λpUq and ι2 : J2 � ρpUq where
λpUq (resp. ρpUq) is the permutation group induced by multiplication by U
on its left (resp. right).

4Indeed, J1 must act freely on rN s, since J2 preserves the fixed points of any j P J1.
This identifies J1 with rN s via j ÞÑ j.1 and makes the action of J1 into the left regular
action. Now J2 ¤ PermspJ1q is in the centralizer of the left regular action of J1, which is
the right regular action of J1 [Hal18, Thm. 6.3.1]. But since J2 is transitive, it must be
isomorphic to J1 and equal to the whole right regular action.
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In particular, in the situation above, H1,j and H2,j can be identified with
λpUjq and ρpUjq for some j. There are now different ways to conclude; we
note that H3,j � Uj by the same observation but in the above model, it is
Uj acting on itself by permutations and commuting with λpUjq and ρpUjq.
Only the identity in Uj can do this, so Uj is the trivial one element group.
Then std �ρj is the 0-dimensional representation for j " 1. This is obviously
a contradiction.

As a byproduct of the above proof, one sees that any putative sequence of
permutation representations of F2�F2 such that std�ρi strongly converges to
the regular representation has to have quite a particular structure. However,
there is a candidate that fits this structure.

Question 2.8. For n P N let θn and φn denote uniformly random permuta-
tion representations F2 Ñ Sn. Then

λ � θn : F2 Ñ Sn! � PermpSnq, ρ � φn : F2 Ñ Sn! � PermpSnq
are two commuting permutation representations of F2. Is it true that as
nÑ 8,

stdn! � rλ � θn � ρ � φns strongÝÝÝÑ λF2�F2

in probability?

Notice that if the above is true it entails that as nÑ 8, λ � θn strongÝÝÝÑ λF2

in probability. This is far from known. In fact it is not known whether

}λ � θnrx1 � x2 � x�1
1 � x�1

2 s} Ñ 2
?

3 (2.1)

in probability; or the same with ‘2’ replaced by any d ¥ 0 and
?

3 replaced
by

?
2d� 1. This is even stronger than the also open question:

‘Are most fixed degree Cayley graphs of Sn uniform expanders?’. ((2.1)
suggests they are moreover almost optimal expanders)

We note here an important and perhaps relevant result of Kassabov
[Kas07] giving the existence of fixed degree uniformly expanding Cayley
graphs of Sn with n Ñ 8. In this vein there is a very recent work of E.
Cassidy [Cas23, Cas24] who proves the strong convergence in probability of

ρn : Fr Ñ UpNpnqq

ρnpxiq def� πλpσiq
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where σi are as above and πλ is the irreducible representation of Sn corre-
sponding to a Young diagram λ with 1 ¤ |λ| ¤ n

1
13 boxes. In fact his result

is uniform in this regime of λ. An analogous result for Upnq (with slightly
worse constant) was obtained recently with de la Salle [MdlS24]. Cassidy’s
result for |λ| up to and including n would answer the above questions about
Cayley graphs of Sn.

The fact that not all RAAGs are PPermF does not have a direct impli-
cation to e.g. closed hyperbolic 3 manifold groups in general because when
one induces a permutation representation from an infinite index subgroup of
a RAAG the resulting permutation representation is of an infinite set and so
cannot be used to potentially prove PPermF for the RAAG.

2.4 Non-examples

We discuss here f.g. residually finite groups5. With M. de la Salle we estab-
lished [MdlS23] that SLdpZq is not PMatF for d ¥ 4. This leaves a curious
gap at d � 3. The reason for this gap is that we rely on the following fact,
established in (ibid.): Every non-trivial finite dimensional unitary represen-
tation of SL4pZq has a non-zero SL2pZq-invariant vector. This in turn means
that the action of SL2pZq in this representation has no spectral gap, and so
when restricted to SL2pZq, a putative sequence of representations of SL4pZq
that strongly converge to the regular representation, cannot converge to the
regular representation of SL2pZq — which does have a spectral gap. In light
of Lemma 2.1 this is a contradiction.

However, there are f.d. irreducible unitary representations of SL3pZq with
dimension tending to infinity and without non-zero SL2pZq-invariant vectors.
See (ibid.) for details — this example is due to Deligne.

2.5 Connection to the Fell topology on the unitary
dual

Suppose G is a locally compact topological group. We assume general fa-
miliarity with the Fell topology on the unitary dual of G (the equivalence

5Non f.g. but residually linear groups have not really been considered in the context
of PMatF to the author’s knowledge and this might be an interesting thing to investigate
further.
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classes of continuous unitary representations of G) and also the notion of
weak containment of representations6.

Proposition 2.9. Suppose that G is any locally compact group. Suppose
that πi : G Ñ UpHiq are any sequence of representations of Γ that strongly
convergence to a unitary representation π8 of G in the sense that for all
f P CcpGq,

lim
iÑ8

}πipfq} � }π8pfq}.

Then for any compact subset K � Ĝzsupportpπ8q, for i ¡ i0pKq, no element
of K is weakly contained in πi.

Remark 2.10. To attempt to promote Proposition 2.9 to an if and only if
statement in the case π8 � λG, one needs to (at least) also discuss possible
discrete series representations of G (for example, in the case G � PSL2pRq
this issue is already present). The point is that a diagonal matrix coefficient
of an integrable discrete series7 will act as a non-zero projection in π8 � λG
and therefore needs to act in a non-zero way in any πi when i is sufficiently
large.

Proof. One can show directly from definition of Fell topology that for any
f P CcpGq, the map

π ÞÑ }πpfq} (2.2)

is continuous in the Fell topology. For completeness we give this argument.
Given π P Ĝ, suppose that ξ is such that }ξ} � 1 and

xπpf� � fqξ, ξy � xπpfqξ, πpfqξy ¡ }πpfq}2 � ε.

Essentially by definition of Fell topology (see [BdlHV08, Prop. F.2.4]) there
is open set around π consisting of π1 such that

|xπ1pgqξ1, ξ1y � xπpgqξ, ξy|   ε

1� }f� � f}L1

6In the Princeton seminar I proved Proposition 2.9 in the case the compact set K was
a point. M. de la Salle pointed out the extension to compacts.

7Integrable meaning having matrix coefficients in L1; not all discrete series have this
property.
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for some ξ1 and for all g in the support of f� � f . This gives }ξ1}2 ¡ 1 � ε
(take g � 1q and integrating with f� � f weights

}π1pfq}2p1� εq ¡ }π1pfq}2}ξ1}2 ¥ xπ1pf� � fqξ1, ξ1y ¡ xπpf� � fqξ, ξy � ε

¡ }πpfq}2 � 2ε

for π1 in this open set. This proves continuity of (2.2).
Now let K be as in the statement of the proposition. For every π P

K, as π is not in the support of π8 there exists fπ P CcpGq and ηπ ¡ 1
such that }πpfπq} ¡ ηπ}π8pfπq}. By the previous assertion there is on open
neighborhood Wπ of π where this inequality still holds. By compactness of
K we then obtain a finite list of functions f1, . . . , fr P CcpGq and η ¡ 1 such
that for all π P K,

}πpfjq} ¡ η}π8pfjq}

for some fj. But for large enough i ¡ i0, from strong convergence

}πipfjq}   η}π8pfjq}

for all j. Combining the above two inequalities gives for some fj, }πipfq}  
}πpfjq} so π is not in the support of πi.

3 Applications

3.1 An induction principle

The following theorem is at the heart of applications of strong convergence
to spectral geometry.

Theorem 3.1. Suppose G is locally compact and Γ is a cocompact lattice in

G. If ρi
strongÝÝÝÑ ρ8 then

IndGΓρi
strongÝÝÝÑ IndGΓρ8.

In applications usually one wants ρ8 � λΓ so that IndGΓρi
strongÝÝÝÑ IndGΓλΓ �

λG. In light of Proposition 2.9, and in the case G is semisimple Lie, the
identification of the unitary dual with spectral parameters, it yields a type
of spectral convergence of IndGΓρi to the Plancherel measure of G.
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The downside of this general argument is that
a. it does not give an effective rate of convergence of spectral parameters,
b. it does not apply as-is to non-uniform lattices.
Both these issues have been dealt with in special instances (see [MT24]

and [HM23] regarding Point a) and [HM23] regarding Point b)).
We now address the proof of Theorem 3.1. It relies on the following type

of ‘matrix amplification’ that is well-known in the literature e.g. [HT05, §9].
We take the chance to record an effective version of this lemma provided by
Mikael de la Salle.

Lemma 3.2 (Effective matrix amplication). Let A be a C�-algebra and x P
MnpAq. For every integer p

}x}MnpAq P r1, n
1
2p smax

i
} ppx�xqpqi,i }

1
2p

A .

As a result,

Proposition 3.3. If Γ is discrete and tρiu8i�1 are a sequence of unitary repre-

sentations of Γ with ρi
strongÝÝÝÑ λΓ then for all r P N and all z P Matr�rpCqbC

CrΓs,
}ridb ρispzq} Ñ }idb λΓpzq}.

Proof of Theorem 3.1. Given f P CcpGq, πpfq acts on L2pG, ρq by

πpfqrφsphq �
»
G

fpgqφpg�1hqdµpgq �
»
G

fphgqφpg�1qdµpgq.

where µ is the left invariant Haar measure. This is the same as

¸
γPΓ

»
F

fphγgqφpg�1γ�1qdµpgq �
¸
γPΓ

»
F

fphγgqρpγ�1qφpg�1qdµpgq

�
¸
γ

ρpγ�1qrAf pγqφ|F s

where Af pγq : L2pF, V q Ñ L2pF, V q such that if ψ P L2pF, V q and h P F ,

Af pγqrψsphq def�
»
F

fphγgqψpg�1q. (3.1)
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Using L2pF, V q � L2pF q b V we obtain a unitary conjugacy

πpfq �
¸
γPΓ

af pγq b ρpγ�1q

where af pγq is defined by the same formula (3.1) as Af but acting on L2pF q.
Now we make two observations. Firstly, af pγq � 0 unless there are h and

g in F such that hγg P supppfq. Let K � G be compact such that

G �
¤
γPΓ

γC

and F � C. The above event is majorized by γ � C�1supppfqC�1 which
is contained in a compact set. This compact subset can meet only finitely
many elements of γ. So

γ ÞÑ af pγq
has finite support.

Secondly, af pγq is an integral operator with kernel Kγph, gq � fphγg�1q.
Since f is continuous, and the closure of F is compact, it is bounded on F
and even Hilbert-Schmidt.

So the image of this conjugacy is contained in

CrΓs bC HSpF q

whereHSpF q are the Hilbert-Schmidt operators on L2pF q and hence generate
a C�-subalgebra of C�

redpΓq b KpL2pF qq where K are the compact operators
on a separable Hilbert space.

Now by Proposition 3.3 together with approximation of compact opera-
tors by finite rank ones, we have for all f P CcpGq and notation as above, if

πi � IndGΓρi and ρi
strongÝÝÝÑ ρ8 then

}πipfq} � }
¸
γPΓ

af pγq b ρipγ�1q} Ñ }
¸
γPΓ

af pγq b λΓpγ�1q} � }IndGΓρ8}.

This proves Theorem 3.1.
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3.2 Hyperbolic surfaces

In this section Γ is the fundamental group of a closed orientable surface of
genus g ¥ 2. Moreover, we discretely embed Γ ãÑ PSL2pRq in some fixed but

arbitrary way, fixing a hyperbolic structure on a genus g surface X
def� ΓzH.

Importantly, this embedding could be arithmetic.
By Corollary 2.5, there is a sequence tφi P HompΓ, Sniqu8i�1 such that the

indcued ρi � std � φi satsify ρi
strongÝÝÝÑ λΓ. Hence

IndGΓρi
strongÝÝÝÑ λPSL2pRq

by Theorem 3.1.
Proceeding depends on knowing the unitary dual of PSL2pRq and the

Plancherel measure. Of interest here are the complementary series which are
outside the support of the Plancherel measure. Now Proposition 2.9 implies
that for any compact subset K of the complementary series, for i "K 1 no
member of K is weakly contained in

IndGΓρi.

A note. (On fibered products)
We now make one more observation. Because ρi is derived from φi, the

space of IndGΓρi is same as L2 sections of the fibered product

ΓzφipG� `2
0prnisqq.

In turn, such sections are the same as L2 functions on

ΓzφipG� rnisq
that have mean zero in every fiber (the above is a covering space of ΓzG).

By the relation between the Casimir operator of PSL2pRq and the Lapla-
cian on the hyperbolic surface

Xφi
def� Γzφi pH� rnisq � ΓzφipG� rnisq{PSOp2q,

one obtains as conclusion:

Theorem 3.4. As iÑ 8,

specp∆Xφi
q X
�

0,
1

4
� op1q

�
� specp∆Xq X

�
0,

1

4
� op1q

�
.

16



By choosing X so that ∆Xhas no eigenvalues below 1
4
, one obtains a

sequence of closed hyperbolic surfaces (covering X) with genus tending to 8
and first non-zero eigenvalue tending to 1

4
. 8

Remark 3.5. This result, which established a conjecture of Buser [Bus78]
was first obtained in joint work of the author with Hide [HM23] by a related
method. At this time, we only had PPermF for free groups, so we worked
with non-compact surfaces with free fundamental groups and compactified
at the end of the argument following Buser–Burger–Dodziuk [BBD88]. The
problem this introduced was that we did not have access to Theorem 3.1 so
we had to make a more involved argument using the resolvent of the Lapla-
cian and cusp-patching techniques. This technique also yields the following
theorem, taking Bordenave–Collins as input.

Theorem 3.6 (Hide–Magee). Let X be a finite-area non-compact hyperbolic
surfaces so that π1pXq � F for some free group F. Let φn now be a uniform
random element of HompF, Snq. Then Xφn is a uniform random degree�n
covering space of X. With probability tending to one as nÑ 8

specp∆Xφn
q X
�

0,
1

4
� op1q

�
� specp∆Xq X

�
0,

1

4
� op1q

�
.

This theorem forms a part of much recent activity on the spectral gaps
of random hyperbolic surfaces [MN20, MP23, MNP22, WX22, LW24, AM23,
Hid23, HT24, AM24].

It is an interesting question to what extent the ‘induction principle’ ob-
tained above in Theorem 3.1 can be extended to general non-cocompact
and even infinite covolume lattices in e.g. reductive groups. In recent work
[CMN24], it has been shown that induction of strong convergence works well
in the setting of conformally compact hyperbolic surfaces (of infinite area),
and even gives resonance free regions — a phenomenon that cannot be seen
solely in the representation theory of Ind

PSL2pRq
Γ ρi. These questions should

be pursued in future work.

8In fact, one can arrange so that the original X is arithmetic and so obtain the above
conclusion where all surfaces are arithmetic. Elaboration on this (also using strong con-
vergence as an essential ingredient) one can prove that every x P r0, 14 s is a limit point of
λ1 of arithmetic hyperbolic surfaces [Mag24].

17



References

[Ago13] Ian Agol, The virtual Haken conjecture (with an appendix by
Ian Agol, Daniel Groves and Jason Manning)., Doc. Math. 18
(2013), 1045–1087 (English). 8, 9

[Alo86] Noga Alon, Eigenvalues and expanders, Combinatorica 6
(1986), no. 2, 83–96, Theory of computing (Singer Island, Fla.,
1984). MR 875835 7

[AM23] Nalini Anantharaman and Laura Monk, Friedman-ramanujan
functions in random hyperbolic geometry and application to
spectral gaps, 2023, arXiv:2304.02678 [math.SP]. 17

[AM24] , Spectral gap of random hyperbolic surfaces, 2024,
arXiv:2403.12576 [math.GT]. 17

[Bau62] Gilbert Baumslag, On generalised free products, Math. Z. 78
(1962), 423–438. MR 140562 8

[BBD88] P. Buser, M. Burger, and J. Dodziuk, Riemann surfaces of
large genus and large λ1, Geometry and analysis on mani-
folds (Katata/Kyoto, 1987), Lecture Notes in Math., vol. 1339,
Springer, Berlin, 1988, pp. 54–63. MR 961472 17

[BC19] C. Bordenave and B. Collins, Eigenvalues of random lifts and
polynomials of random permutation matrices, Ann. of Math.
(2) 190 (2019), no. 3, 811–875. MR 4024563 3, 6, 7

[BdlHV08] Bachir Bekka, Pierre de la Harpe, and Alain Valette, Kazh-
dan’s property (t), New Math. Monogr., vol. 11, Cambridge:
Cambridge University Press, 2008 (English). 12

[BHW11] Nicolas Bergeron, Frédéric Haglund, and Daniel T. Wise, Hy-
perplane sections in arithmetic hyperbolic manifolds, J. Lond.
Math. Soc., II. Ser. 83 (2011), no. 2, 431–448 (English). 9

[BK97] Bruce Blackadar and Eberhard Kirchberg, Generalized induc-
tive limits of finite-dimensional C�-algebras, Math. Ann. 307
(1997), no. 3, 343–380 (English). 2

18



[BKKO17] Emmanuel Breuillard, Mehrdad Kalantar, Matthew Kennedy,
and Narutaka Ozawa, C�-simplicity and the unique trace prop-
erty for discrete groups, Publ. Math., Inst. Hautes Étud. Sci.
126 (2017), 35–71 (English). 2

[Bus78] P. Buser, Cubic graphs and the first eigenvalue of a Riemann
surface, Math. Z. 162 (1978), no. 1, 87–99. MR 505920 17

[BW12] Nicolas Bergeron and Daniel T. Wise, A boundary criterion
for cubulation., Am. J. Math. 134 (2012), no. 3, 843–859 (En-
glish). 8

[Cas23] Ewan Cassidy, Projection formulas and a refinement
of schur–weyl–jones duality for symmetric groups, 2023,
arXiv:2312.01839 [math.RT]. 10

[Cas24] , Random permutations acting on k-tuples have near-
optimal spectral gap for k=poly(n)., 2024, preprint. 10

[CG05] Christophe Champetier and Vincent Guirardel, Limit groups
as limits of free groups, Israel J. Math. 146 (2005), 1–75. MR
2151593 8

[CGVTvH24] Chi-Fang Chen, Jorge Garza Vargas, Joel A. Tropp, and Ra-
mon van Handel, A new approach to strong convergence, 2024,
arXiv:2405.16026. 7

[CM14] B. Collins and C. Male, The strong asymptotic freeness of Haar
and deterministic matrices, Ann. Sci. Éc. Norm. Supér. (4) 47
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